18 Haziran 2010 Cuma

Communication and Target Location Systems

ECHOLOCATION OF BATS
Bats are very interesting creatures. The most intriguing of their abilities is their extraordinary faculty of navigation.
The echolocative ability of bats was discovered through a series of experiments conducted by scientists. Let us take a closer look at these experiments in order to unveil the extraordinary design of these creatures:26
In the first of these experiments, a bat was left in a completely dark room. On one corner of the same room, a fly was placed as a prey for the bat. From then on, everything taking place in the room was monitored with night vision cameras. As the fly started to take into the air, the bat, from the other corner of the room, swiftly moved directly to where the fly was and captured it. Through this experiment, it was concluded that the bats had a very sharp sense of perception even in complete darkness. However, was this perception of the bat due to the sense of hearing? Or, was it because it had night vision?
In order to answer these questions, a second experiment was carried out. In a corner of the same room a group of caterpillars were placed and covered under a sheet of newspaper. Once released, the bat did not lose any time in lifting the newspaper sheet and eating the caterpillars. This proved that the navigational faculty of the bat has no relationship with the sense of vision.
Scientists continued with their experiments on bats: a new experiment was conducted in a long corridor, on one side of which was a bat and on the other a group of butterflies. In addition, a series of partition walls were installed perpendicular to the sidewalls. In each partition, there was a single hole just big enough for the bat to fly through. These holes, however, were located in a
different spot on each partition. That is, the bat had to zigzag its way through them.
Scientist started their observations as soon as the bat was released into the pitch darkness of the

Experiments show that bats are able to easily locate and fly through the passageways in the walls even in complete darkness.
corridor. When the bat came to the first partition it located the hole easily and passed right through it. The same was observed at all partitions: the bat appeared not only to know where the partition was but also where exactly the hole was. After going through the last hole, the bat filled its stomach with its catch.
Absolutely stunned by what they observed, the scientists decided to conduct one last experiment in order to understand the sensitivity of the bat's perception. The goal this time was to determine the bat's perceptual limits more clearly. Again, a long tunnel was prepared and steel wires of 3/128-inch (0.6 mm) diametre were hung from ceiling to floor and placed randomly throughout. Much to the observers' astonishment, the bat completed its journey without tripping over a single obstacle. This flight showed that the bat is able to detect obstacles of as little as 3/128-inch (0.6 mm) thickness. The research that followed revealed that the bat's incredible perceptual faculty is linked to their echolocation system. Bats radiate high frequency sounds in order to detect objects around them. The reflection of these sounds, which are inaudible to humans, enables the bat to get a "map" of its environment.27 That is, the bat's perception of a fly is made possible by the sounds reflected back to the bat from the fly. An echolocating bat registers each outgoing sound pulse and compares the originals to returning echoes. The time lapsed between generating the outgoing sound and receiving an incoming echo provides an accurate assessment of a target's distance from the bat. For example, in the experiment where the bat caught the caterpillar on the floor, the bat perceived the caterpillar and the shape of the room by emitting high pitch sounds and detecting the reflected signals. The floor reflected the sounds; hence, the bat determined its distance from the floor. On the contrary, the caterpillar was about 3/16-inch (0.5 cm) to 3/8-inch (1 cm) closer to the bat than was the ground. In addition, it made minute moves and this, in turn, changed the reflected frequencies. This way, a bat could detect the presence of a caterpillar on the floor. It emitted about twenty thousand cycles in a second and could analyse all the reflected sounds. Furthermore, while it carried out this task, the bat itself travelled. Careful consideration of all these facts clearly reveals the miraculous design in their creation.
Another stunning feature of bats' echolocation is the fact that the hearing of bats has been created such that they cannot hear any other sounds than their own. The spectrum of frequencies audible to these creatures is very narrow, which would normally create a great problem for the animal because of the Doppler Effect. According to the Doppler Effect, if the source of sounds and the receiver of sounds are both relatively stationary, the receiver will detect the same frequency as the source emits. However, if one or the other is moving, the detected frequency will be different than the emitted frequency. In this case, the frequency of the reflected sound could fall into the spectrum of frequencies inaudible to the bat. The bat, therefore, faces the potential problem of not being able to hear the echoes of its sounds from a fly that moves away.
 
BAT
(Eptesicus)
RADAR
(SCR-268)
RADAR
(AN/APS-10)
SONAR
QCS-T
Weight of system (kg)0.01212,00090450
Peak Power Output (W)0.0000175,00010,000600
Diametre of Target (m)0.01535
Echolocation Efficiency Index
2x1096x10-53x10-22x10-3
Relative Figure of Merit13x10-141,5x10-1110-12
The system used by bats to locate their prey is millions of times more efficient and accurate than manmade radar and sonar. The table above clearly illustrates these properties. "Echolocation efficiency index" is range divided by the product weight times power times target diametre. "Relative figure of merit" compares the echolocation efficiency indexes with the bat as 1.
Nevertheless, this is never a problem for the bat because it adjusts the frequency of sounds that it sends towards moving objects as if it knows about the Doppler Effect. For instance, it sends the highest frequency sounds to a fly moving away so that the reflections are not lost in the inaudible section of the sound spectrum.
So, how does this adjustment take place?
In the brain of the bat, there are two kinds of neurons (nerve cells) that control its sonar systems; one perceives the reflected ultrasound and the other commands the muscles to produce echolocation calls. These two neurons work in such complete synchrony that a minute deviation in the reflected signals alerts the latter and provide the frequency of the call to be in tune with the frequency of the echo. Hence, the pitch of the bat's ultrasound changes in accordance with its surroundings for maximum efficiency.
It is impossible to overlook the blow that this system deals to the explanations of the theory of evolution through coincidence. The sonar system of bats is extremely complex in nature and cannot be explained by evolution through arbitrary mutations. The simultaneous existence of all components of the system is vital for its functionality. The bat has not only to release high pitch sounds but also to process reflected signals and to manoeuvre and adjust its sonar squeals all at the same time. Naturally, all of this cannot be explained by coincidence and can only be a sure sign of how flawlessly God created the bat.
The largest bat colony on earth, with a population reaching 50 million, lives in America. Freetails ride 60 mph (95 km/h), and fly as high as 10,000 feet (3050 metres). It is so large that it can be easily observed by airport radar.28It is discovered that bats wander in many different ways once they leave their cave. However, they always fly back to it on a straight route from wherever they are. It is still not clear how they are able to navigate the return journey to the cave.
Scientific research further reveals new examples of the miracles of creation in bats. Through each new miraculous discovery, the world of science attempts to understand how these systems work. For example, new research on bats has had very interesting findings in recent years.29 A few scientists, who wanted to examine a group of bats living in a certain cave, installed transmitters on some of the group members. Bats were observed to leave the cave at night and feed outside until dawn. Researchers kept detailed records of these journeys. They discovered that some bats travelled as far as 30-45 miles (50-70 kilometres) from the cave. The most astonishing finding was the return flight, which started shortly before sunrise. All bats flew straight back to the cave from wherever they were. How can bats know where they are and how far away they are from their caves?
We do not yet have detailed knowledge of how they navigate their return flight. Scientists do not believe the auditory system to have a big impact on the return journey. Reminding us that bats are completely blind to light, scientists expect to encounter another surprising system. In short, science continues to discover new miracles of creation in the bats.

ELECTRIC FISH
The Electroshock Gun In The Electric Eel
The electric eels, whose lengths sometimes exceed 6.6 feet (2 metres), live in the Amazon. Two-thirds of the bodies of these fish are covered with electrical organs, which have around 5,000 to 6,000 electroplaques. Thus, they can produce charges of 500 volts of electricity at about two amperes. This is roughly equivalent to more power than a conventional TV set utilises.
The faculty of generation of electricity has been given to these creatures for purposes both of defence and offence. The fish uses this electricity to kill its predators by giving them an electric shock. The electric shock generated by this fish is enough to kill cattle from a distance of 6.6 feet (2 metres). The electricity-generating mechanism of this fish is capable of engaging as quickly as in two to three thousandth of a second.
Such an immense power in a creature is a tremendous miracle of creation in itself. The system is quite complex and cannot possibly be explained through "step by step" development. That is because an electrical system without full functionality could not bring the creature any advantage in terms of survival. In other words, all components of the system must have been created perfectly at the same time.
Fish That "See" By Means Of An Electrical Field
Apart from fish armoured with potential electric charges, there are other fish that generate low voltage signals of two to three volts. If these fish do not use such weak signals for hunting or defence, for what could they be possibly used?
Fish utilise these weak signals as a sensory organ. God created a sensory system in the bodies of fish, which transmits and receives these signals.30
The fish produces emissions of electricity in a specialised organ on its tail. The electricity is emitted from thousands of pores on the creature's back in the form of signals that momentarily create an electrical force field surrounding it. Any object within this field refracts it, by which the fish is informed of the size, conductivity and movement of the object. On the body of fish, there are electrical sensors that continuously detect the field just as do radar.
In short, these fish have a radar that transmits electrical signals and interprets the alterations in the fields caused by objects interrupting these signals around their bodies. When the complexity of radar used by humans is considered, the wonderful creation in the body of fish becomes clear.
Special Purpose Receptors

Gnathonemus Petersi
In the bodies of these fish, there are various types of receptors. Ampullary receptors detect the low frequency electrical signals given off by other swimming fish or insect larvae. These receptors are so sensitive that they can even detect the magnetic field of the earth as well as gather information on prey and predators.
The ampullary receptors cannot perceive the high frequency signals transmitted by the fish. This is accomplished by a tubular receptors. These sensors are sensitive to fish's own discharge and they work to map the surroundings.
By means of this system these fish can communicate and warn one another against any threats. They also exchange information about species, age, size and gender.


Signals Describing Gender Differences
Each species of electric fish has a unique signature signal. Furthermore, there can be differences among the individuals of a species. However, the general structure remains unchanged. Some details are particular to the individual. When a female runs across a male fish it immediately senses it and behaves accordingly.
Signals Describing Age
Electrical signals also carry information on the age of these fish. A newly hatched fish bears a different signature from an adult. The signals of the newly hatched fish maintain their characteristic until the fourteenth day after its birth, when they change and become like the normal signals of an adult. This plays a great role in regulating the complex relationships of motherhood and fatherhood. A father can recognise his infant, and bring it home to safety.
Living Activities Communicated Through Signals
Fish can also communicate information other than gender and age. In all the species of electrical fish, frequency hikes transmit alerting messages. For instance, a Mormydae normally transmits electrical signals with a frequency of 10 Hz. i.e.10 vibrations per second, which it can easily increase up to 100-120 Hz. A motionless Mormydae warns opponents of an attack. This behaviour resembles the tightening of fists before a fight. Most of the time, this warning is powerful enough to discourage the opponent. After a fight, the wounded party, in an electrical silence, stops sending signals for about 30 minutes. The fish that calms down or leaves the fight usually remains motionless. The purpose behind this is to make it harder for the others to find them. Another purpose is to avoid hitting surrounding objects since they become electrically blind due to lack of signals.
Special System For Non-Confusion Of Signals

An electric fish locates another one by means of signals.
So then, what happens when an electric fish comes near another producing the same signals? Does this not interfere with both their radars? Interference would be a normal consequence here. However, they have been created with a natural defence mechanism that prevents this confusion. Experts name this system "Jamming Avoidance Response" or JAR for short. When the fish encounters another at the same frequency, it changes its frequency. This way confusion is avoided early and it, therefore, never reaches any further.
All of this confirms the extremely complex systems in electrical fish. The origin of these systems cannot be fully explained by evolution. Likewise, Darwin in his book, The Origin of Species, admitted the impossibility of explaining these creatures by his theory in a chapter called "Difficulties of the Theory".31 Since Darwin, the electrical fish have been shown to have much more complex systems than he thought.
Just like all other forms of life, electric fish were also created flawlessly by God as a demonstration for us of the existence and infinite knowledge of God Who created them.

The fish that transmit electrical waves communicate through these waves. Members of the same species use similar signals. Due to their communal life, they change frequencies in order to prevent confusion, which enables similar but distinct signals to be distinguished.

Gymnarchus nilotikusGnathonemus pertersiiGnathonemus moori

Mormyrus rumeGnathonemus mooriMormyrops deliciosus

An electric fish can detect the gender of another by means of signals.

SONAR INSIDE A DOLPHIN’S SKULL
A dolphin can distinguish between two different metal coins under water in complete darkness and up to 2 miles (3 kilometres) away. Does it see that far? No, it does this without seeing. It can make such accurate determinations by means of the perfect design of an echolocation system inside its skull. It gathers very detailed information on shape, size, speed and structure of near objects.
It takes some time for a dolphin to master the skills needed to use such a complicated system. While an experienced adult dolphin can detect most objects through a few signals, a juvenile has to experiment for years.
Dolphins do not use their echolocation just to detect their surroundings. Sometimes they group during feeding and emit high-pitched sounds so powerful that they dazzle their prey, which are then ready to be picked up. An adult dolphin produces sounds inaudible to humans (20,000 Hz. and above). The focusing of soundwaves is done in several areas of the dolphin's head. The melon, which is a fatty structure in the dolphin's forehead, serves as an accaustical lens and focuses the clicks of the dolphin into a narrow beam. Therefore, the dolphin can direct the clicks at will by moving its head. It can direct these waves at will by moving its head.
An adult dolphin radiates sounds inaudible to humans (20,000 Hz. and above). These waves are released from the lobe, called "melon", in front of their heads. It can direct these waves at will by moving its head. The sonar waves are immediately reflected when they encounter any obstacle. Lower jaw acts as a receptor, which transmits the signals back to the ear. Ear forwards the data to the brain, which analyzes and interprets the meanings.
The clicks immediately echo back when they hit any obstacle. The lower jaw acts as a receptor, which transmits the signals back to the ear. On each side of the lower jaw is a thin bony area, which is in contact with a lipid material. Sound is conducted through this lipid material to the auditory bullae, a large vesicle. Then the ear forwards the data to the brain, which analyses and interprets the meanings. A similar lipid material also exists in the sonar of whales.
Different lipids (fatty compounds) bend the ultrasonic (sound waves above our range of hearing) sound waves traveling through them in different ways. The different lipids have to be arranged in the right shape and sequence in order to focus the returning sound waves. Each separate lipid is unique and different from normal blubber lipids and is made by a complicated chemical process that requires a number of different enzymes. This sonar system in dolphins could not possibly have developed gradually, as claimed by the theory of evolution. That is because only by the time the lipids would have evolved to their final place and shape, could the creature have made use of this crucial system. In addition, support systems like the lower jaw, the inner ear system and the analysis centre in the brain would all have to be fully developed. Echolocation clearly is an "irreducibly complex" system, which for it to have evolved in phases is simply impossible. Hence, it is obvious that the system is another flawless creation of God.


THE STORY OF A MOMENT'S COMMUNICATION
Everybody can remember a time when his or her eyes met with an acquaintance's eyes and they greeted one another. Would you believe that this communication of a brief moment has a long story?
Let's assume that on a certain afternoon two men are situated apart from one another. In spite of their close friendship, they have not yet recognised one another. One of these men, turning his head in the direction of his friend, whom he has not yet recognised, starts a chain of biochemical reactions: the light reflected from the body of his friend enters the eye lens at a speed of ten trillion photons (light particles) per second. Light travels through the lens and the fluid that fills the eyeball before falling on the retina. On the retina there are about hundred million cells called "cones" and "rods". Rods differentiate light from dark and cones perceive colours.

The human eye functions through the harmonious working of about forty different components. In the absence of even one of these components would make the eye useless. For instance, in the absence of even tear gland alone, the eye would eventually dry out and cease to function. This system, which is irreducible to simplicity, can never be explained by "gradual development" as is claimed by evolutionists. This shows that the eye emerged in a complete and perfect form, which means that it was created.
CORNEA AND IRIS

The cornea, one of the 40 basic components of the eye, is a transparent layer located at the very front of the eye. It allows light through as perfectly as does window glass. It is surely not a coincidence that this tissue, found at nowhere else in the body, is situated just at the right place, that is, the front surface of the eye. Another important component of the eye is the iris, which gives the eye its colour. Located right behind the cornea, it regulates the amount of light admitted into the eye by contracting or expanding the pupil - the circular opening in the middle. In bright light, it immediately contracts. In dim light, it enlarges to allow more light to enter the eye. A similar system has been adapted as a basis for the design of cameras in order to adjust the amount of light intake, but it is nowhere near as successful as the eye.
Depending on the external objects, varying light waves fall on different places on the retina. Let's think about the moment the person in our assumed situation sees his friend. Some features on his friend's face cast different intensities of light on his retina e.g. darker facial features such as eyebrows would reflect light at much lower intensities. Neighbouring cells on the retina, however, receive stronger intensities of light reflected from the forehead of his friend. All of his friend's facial features cast waves of various intensities on the retina of his eye.
What kind of stimuli do these light waves provoke?
The answer to this question is, indeed, very complicated. Nevertheless, the answer has to be examined to fully appreciate the extraordinary design of the eye.
The Chemistry of Seeing
When photons hit the cells of the retina, they activate a chain reaction, rather like a domino effect. The first of these domino pieces is a molecule called "11-cis-retinal" that is sensitive to photons. When struck by a photon, this molecule changes shape, which in turn changes the shape of a protein called "rhodopsin" to which it is tightly bound. Rhodopsin then takes a form that enables it to stick to another resident protein in the cell called "transducin".
Prior to reacting with rhodopsin, tranducin is bound to another molecule called GDP. When it connects with rhodopsin, transducin releases the GDP molecule and is linked to a new molecule called GTP. That is why the complex consisting of the two proteins (rhodopsin and transducin) and a smaller chemical molecule (GTP) is called "GTP-transducinrhodopsin".
The new GTP-transducinrhodopsin complex can now very quickly bind to another protein resident in the cell called "phosphodiesterase". This enables the phosphodiesterase protein to cut yet another molecule resident in the cell, called cGMP. Since this process takes place in the millions of proteins in the cell, the cGMP concentration is suddenly reduced.
How does all this help with sight? The last element of this chain reaction supplies the answer. The fall in the cGMP amount affects the ion channels in the cell. The so-called ion channel is a structure composed of proteins that regulate the number of sodium ions within the cell. Under normal conditions, the ion channel allows sodium ions to flow into the cell, while another molecule disposes of the excess ions to maintain a balance. When the number of cGMP molecules falls, so does the number of sodium ions. This leads to an imbalance of charge across the membrane, which stimulates the nerve cells connected to these cells, forming what we refer to as an "electrical impulse". Nerves carry the impulses to the brain and "seeing" happens there.
In brief, a single photon hits a single cell and, through a series of chain reactions, the cell produces an electrical impulse. This stimulus is modulated by the energy of the photon, that is, the brightness of light. Another fascinating fact is that all of the processes described so far happen in no more than one thousandth of a second. Other specialised proteins within the cells convert elements such as 11-cis-retinal, rhodopsin and transducin back to their original states. The eye is under a constant shower of photons, and the chain reactions within the eye's sensitive cells enable it to percieve each one of these photons.32
The process of sight is actually a great deal more complicated than the outline presented here would indicate. However, even this brief overview is sufficient to demonstrate the extraordinary nature of the system. There is such a complicated, finely calculated design inside the eye that chemical reactions in the eye resemble the domino shows in the Guinness Book of World Records. In these shows, tens of thousands of domino pieces are so strategically placed that tipping the first piece activates the entire system. In some areas of the domino chain, many apparatuses are installed to start a new sequences of reactions, e.g. a winch carrying a piece to another location and dropping it exactly at the place necessary for a further sequence of reactions.
Of course, nobody thinks that these pieces have been "coincidentally" brought to their precise locations by winds, quakes or floods. It is obvious to everyone that each piece has been placed with great attention and precision. The chain reaction in the human eye reminds us that it is nonsense to even entertain the thought of the word "coincidence". The system is composed of a number of different pieces assembled together in very delicate balances and is a clear sign of "design". The eye is created flawlessly.
Biochemist Michael Behe comments on the chemistry of the eye and the theory of evolution in his book Darwin's Black Box:
Now that the black box of vision has been opened, it is no longer enough for an evolutionary explanation of that power to consider only the anatomical structures of whole eyes, as Darwin did in the nineteenth century (and as popularizers of evolution continue to do today). Each of the anatomical steps and structures that Darwin thought were so simple actually involves staggeringly complicated biochemical processes that can not be papered over with rhetoric.33
Beyond Seeing
What has been explained so far is the first contact of photons, reflected off a friend's body, with a man's eye. The retinal cells produce electrical signals through complicated chemical processes as described above. In these signals there exists such detail that the face of the man's friend in the example, his body, hair colour and even a minute mark on his face have been encoded. Now the signal has to be carried to the brain.
Nerve cells (neurons) stimulated by retinal molecules show a chemical reaction as well. When a neuron is stimulated, protein molecules on its surface change shape. This blocks the movement of the positively charged sodium atoms. The change in the movement of the electrically charged atoms creates a voltage differential within the cell, which results in an electrical signal. The signal arrives at the tip of the nerve cell after travelling a distance shorter than a centimetre. However, there is a gap between two nerve cells and the electrical signal has to cross this gap, which presents a problem. Certain special chemicals between the two neurons carry the signal. The message is carried this way for about a quarter to a fortieth of a millimetre. The electrical impulse is conducted from one nerve cell to the next until it reaches the brain.
These special signals are taken to the visual cortex in the brain. The visual cortex is composed of many regions, one on top of the other, about 1/10 inch (2.5 mm) in thickness and 145 square feet (13.5 square metres) in area. Each one of these regions includes about seventeen million neurons. The 4th region receives the incoming signal first. After a preliminary analysis, it forwards the data to neurons in other regions. In any phase, any neuron can receive a signal from any other neuron.
This way, the man's picture forms in the visual cortex of the brain. However, the image now needs to be compared to the memory cells, which is also done very smoothly. Not a single detail is overlooked. Furthermore, if the friend's perceived face looks slightly more pale than normal then the brain activates the thought, "why is my friend's face so pale today?"
Greeting
That's how two separate miracles happen within a period of time less than a second, which we refer to as "seeing" and "recognising".
The input that arrives in hundreds of millions of light particles reaches the mind of the person, is processed, compared to the memory and enables the man to recognise his friend.

The auricle is designed to collect and focus sounds into the auditory canal. The inside surface of the auditory canal is covered with cells and hairs that secrete a thicle waxy product to protect the ear against external dirt. At the end of the ear canal towards the start of the middle ear is the eardrum. Beyond the eardrum there are three small bones called the hammer, anvil and stirrup. The eustachian tube functions to balance air pressure in the middle ear. At the end of the middle ear is the cochlea that has an extremely sensitive hearing mechanism and is filled with a special fluid.
A greeting follows recognition. A person deduces the reaction to be given to acquaintances from within the memory cells in less than a second. For example, he determines that he needs to say "greetings" upon which the brain cells controlling facial muscles will command the move that we know as a "smile". This command is similarly transferred through nerve cells and triggers a series of other complicated processes.
Simultaneously, another command is given to the vocal cords in the throat, tongue and the lower jaw and the "greetings" sound is produced by the muscle movements. Upon release of the sound, air molecules start travelling towards the man to whom the greeting is sent. The auricle gathers these sound waves, which travel at approximately twenty feet (six metres) per one fiftieth of a second.
THE TRAVELLING OF THE SOUND FROM EAR TO BRAIN
The ear is such a complex wonder of design that it alone nullifies the explanations of the theory of evolution in regards to a creation based on "coincidence". The hearing process in the ear is made possible by a completely irreducibly complex system. Sound waves are first collected by the auricle (1) and then hit the eardrum (2). This sets the bones in the middle ear (3) vibrating. Thus sound waves are translated into mechanical vibrations, which vibrate the so-called "oval window" (4), which in turn sets the fluid inside the cochlea (5) in motion. Here, the mechanical vibrations are transformed into nerve impulses which travel to the brain through the vestibular nerves (6).
There is an extremely complex mechanism inside the cochlea. The cochlea (enlarged figure in the middle) has some canals (7), which are filled with fluid. The cochlear canal (8) contains the "organ of corti" (9) (enlarged figure on far right), which is the sense organ of hearing. This organ is composed of "hair cells" (10). The vibrations in the fluid of the cochlea are transmitted to these cells through the basilar membrane (11), on which the organ of corti is situated. There are two types of hair cells, inner hair cells (12a) and outer hair cells (12b). Depending on the frequencies of the incoming sound, these hair cells vibrate differently which makes it possible for us to distinguish the different sounds we hear.
Outer hair cells (13) convert detected sound vibrations into electrical impulses and conduct them to the vestibular nerve (14). Then the information from both ears meet in the superior olivary complex (15). The organs involved in the auditory pathway are as follows: Inferior colliculus (16), medial geniculate body (17), and finally the auditory cortex (18).34
The blue line inside the brain shows the route for high pitches and the red for low pitches. Both cochleas in our ears send signals to both hemispheres of the brain.
As is clear, the system enabling us to hear is comprised of different structures that have been carefully designed in the minutest detail. This system could not have come into existence "step by step", because the lack of the smallest detail would render the entire system useless. It is, therefore, very obvious that the ear is another example of flawless creation.
The vibrating air inside both ears of that person rapidly travels to his middle ear. The eardrum, 0.30 inch (7.6 millimetre) in diametre, starts vibrating as well. This vibration is then transferred to the three bones in the middle ear, where they are converted into mechanical vibrations that travel to the inner ear. They then create waves in a special fluid inside a snail shell-like structure called the cochlea.
Inside the cochlea, various tones of sound are distinguished. There are many strings of varying thickness inside the cochlea just as in the musical instrument, the harp. The sounds of the man's friend literally play their harmonies on this harp. The sound of "greetings" starts from a low pitch and rises. First, the thicker cords are rattled and then the thinner ones. Finally, tens of thousands of little bar-shaped objects transfer their vibrations to the auditory nerve.

The three bones in the middle ear function as a bridge between the eardrum and the inner ear. These bones, which are connected to one another by joints, amplify sound waves, which are then transmitted to the inner ear. The pressure wave that is created by the contact of the stirrup with the membrane of the oval window travels inside the fluid of the cochlea. The sensors triggered by the fluid start the "hearing" process.
Now the sound "greetings" becomes an electrical signal, which quickly travels to the brain through the auditory nerves. This journey inside the nerves continues until reaching the hearing centre in the brain. As a result, in the person's brain, the majority of the trillions of neurons become busy evaluating the visual and audio data gathered. This way, the person receives and perceives his friend's greeting. Now he returns the greeting. The act of speaking is realised through perfect synchronisation of hundreds of muscles within a minute portion of a second: the thought that is designed in the brain as a response is formulated into language. The brain's language centre, known as Broca's area, sends signals to all the muscles involved.
In order to facilitate speech, not only do the vocal cords, nose, lungs and air passages have to work in harmony, but also the muscle systems that support these organs. Sounds created during speech are produced by air passing through the vocal cords.
First, the lung provides "hot air". Hot air is the raw material of speech. The primary function of this mechanism is the inhalation of oxygen-rich air into the lungs. Air is taken in through the nose, and it travels down the trachea into the lungs. The oxygen in the air is absorbed by the blood in the lungs. The waste matter of blood, carbon dioxide, is given out. The air, at this point, becomes ready to leave the lungs.
The air returning from the lungs passes through the vocal cords in the throat. These cords are like tiny curtains, which can be "drawn" by the action of the small cartilages to which they are attached. Before speech, the vocal cords are in an open position. During speech they are brought together and caused to vibrate by the exhaled air passing through them. This determines the pitch of an individual's voice: the tenser the cords, the higher the pitch.
The air is vocalised by passing through the cords and reaches to the surface via the nose and mouth. The person's mouth and nose structure adds personal properties unique to him. The tongue draws near to and away from the palate and the lips take various shapes. Throughout these processes, many muscles work at great speed.35
The person's friend compares the sound he hears to others in his memory. By comparing, he can immediately tell if it is a familiar sound. Therefore, both parties recognise and greet each other.
Vocal cords are comprised of flexible cartilages tied to muscles on the skeleton. When the muscles are at rest, the cords are open (left). The cords close during speech (above). The tenser the cords, the higher the pitch.
All the above takes place during two friends noticing and greeting one another. All of these extraordinary processes happen at incredible speeds with stunning precision, of which we are not even aware. We see, hear and speak so very easily as if it is a very simple thing. However, the systems and processes that make them possible are so unimaginably complex.
This complex system is full of examples of unparalleled design that the theory of evolution cannot explain. The origins of vision, hearing and thinking cannot be explained by the trust of evolutionists in "coincidences". On the contrary, it is obvious that all of them have been created and given to us by our Creator. While the human cannot even understand the working mechanism of systems that enable him to see, hear and think, the infinite wisdom and power of God Who created all these from nothing is apparently obvious.



The operation of the vocal cords has been photographed by means of high-speed cameras. All of the different positions seen above take place within less than one tenth of a second. Our speech is made possible through the flawless design of the vocal cords.
  

Reactive Swimming Systems


Cuttlefish receive great help during hunting from the tentacles in its mouth. These whiplike tentacles normally remain coiled in pouches beneath its arms. When the fish encounters a prey, it unleashes them and snatches up the prey. The fish relies on its adequately designed arms (eight in total) to take care of the rest. It can easily tear a crab to bits by using its beak. The cuttlefish uses its beak with such mastery that it can neatly puncture the shell of a crab and rasp out the meat with its tongue.36
Vertebrates are the fastest running, best swimming and farthest flying creatures on earth
. The main factor underlying all of these abilities is the presence of skeletons made of hard materials such as the bones that do not lose their shape. These bones provide tremendous support for contracting and flexing muscles, which bring about continuous movements through moving joints.
However, invertebrates move at much lower speeds, in comparison with vertebrates, due to their boneless structures.
Cuttlefish are invertebrates that do not have bones in their bodies despite being called fish. They have extraordinary abilities to manoeuvre because of a very interesting system.
Their soft body is covered with a thick mantle under which large amounts of water are drawn and flushed out by strong muscles and that enables them to escape backwards.

The cuttlefish whose scientific nomenclature is Loligo Vulgaris are the smallest among their species. Their reactive swimming system enables them to move at speeds in excess of nineteen mph (30 km/h). 37

This mechanism in cuttlefish is highly complex. On both sides of the animal's head are pocket-like openings. The water is drawn in through these openings into a cylinder-shaped cavity inside its body. Then, it jets out this water from a narrow pipe immediately under its head with great pressure, which enables it to move swiftly in the opposite direction due to reactive forces.
This swimming technique is highly appropriate in terms of both speed and durability. A Japanese cuttlefish, called Todarodes Pacificus, in their migration of 1250 miles (2000 kilometres) travel at about 1.3 mph (2 km/h). For short distances, it can accelerate up to 7 mph (11 km/h). Some species are known to exceed 19 mph (30 km/h).
The cuttlefish can avoid its predators through very swift movements as a result of these fast muscular contractions. When their speed alone is not enough for safety, they squirt a cloud of dense, dark coloured ink that is synthesised in their bodies. This ink surprises their predators for a few seconds, which is usually enough for them to escape. The undetectable fish behind the ink cloud leaves the area immediately.
The defence system and reactive swimming styles of cuttlefish also work for them during hunting. They can attack and chase their prey at high speeds. Their immensely complicated nervous system regulates the contractions and flexing necessary for their reactive swimming. Accordingly, their respiratory systems are also in ideal condition, which provides the high metabolism that is needed for the jet propulsion.
The cuttlefish is not the only animal swimming by means of a reactive system. Octopuses also utilise this system. However they are not active swimmers; they spend most of their time wandering over rocks and gorges in the deep sea.

The cuttlefish also has radial and circular muscles as in the octopus, but instead of the octopus' longitudinal muscles there is a fibrous layer in the cuttlefish. This layer prevents its body from elongation when both the muscles contract as well as providing a sturdy base for the radial muscles.
The octopus bends its body by contracting either one of the two longitudinal muscles, which enables it swim in the water.
The inner skin of the octopus is composed of many layers of muscles one on top of another. They constitute three different types of muscles called longitudinal, circular and radial. These structures enable various movements of the octopus by balancing and supporting one another.
Shown in the figure are the jet propulsion cycle and sections of the cuttlefish. The cycle begins with enlargement (1). The outside diameter of the body is enlarged by 10% of the normal size, which increases the volume of the mantle cavity by about 22%. Water enters from the openings on both sides of the head passing through the funnel-shaped pipe. When the maximum enlargement is reached, the diameter of the body is reduced to 75% of normal size (2). Pressure in the cavity suddenly increases and pushes the inner tap on the mouth of flushing-out pipe, which closes the water intake. Nearly all the water (approximately 60% of normal body size) is forcefully expelled out through the pipe. The body recovers its normal shape by the intake of water (3). Any further contractions could easily harm the creature. The jet propulsion lasts about one second and can be repeated 6 to 10 times in a row, including suction time. When swimming slowly the body of the cuttlefish contracts to 90% of its original size.
When flushing water out, the circular muscles contract lengthwise. However, since they have the tendency to maintain their volume, their width increases, which would normally elongate the body. In the meantime, the stretching longitudinal muscles prevent the elongation. The radial muscles remain stretched during these happenings that cause the mantle to thicken. After the jet propulsion, the radial muscles contract and shrink the length, which causes the mantle to become thinner, and the mantle cavity to be filled with water again.
The eye structure of a cuttlefish is extremely complex. It can focus the pupil by bringing the lens nearer to the retina. It can also adjust the volume of light taken into the eye by closing or opening the little lids beside the eye. The presence of such highly complex organs in structures of two completely distinct species such as humans and cuttlefish
cannot possibly be explained by evolution. Darwin also spoke about this impossibility in his book.38
The muscular system in the cuttlefish closely resembles that of the octopus. However, there is an important difference: the cuttlefish has a layer of tendons, called the tunic, instead of the longitudinal muscles of an octopus. The tunic is composed of two layers that cover the inside and outside of the body just like the longitudinal muscles. In between these layers are the circular muscles. The radial muscles are situated in between these, in a perpendicular orientation.
The reactive swimming systems, ink discharge-based defensive methods, the acute vision and the colour changing skin abilities that cuttlefish have are perfect examples of creation.

 
Under the skin of the cuttlefish is arrayed a dense layer of elastic pigment sacs called chromatophores. By using this layer, they can change the apparent colour of their skin, which not only helps in camouflage but also acts as a way to communicate. For instance, a male fish can take on a different colour when mating than that it would take on when in a fight with a challenger.When a male flirts with a female, it takes on a bluish colour. If another male comes by during this, it gives a reddish colour to the half that faces the other male. Red is the warning colour used during a challenge or an aggressive action.
A thin layer of skin that surrounds the arms and the body further supports the reactive swimming system of the cuttlefish. The fish floats in the water by means of waving this curtain-like membrane. The arms, on the other hand, function to balance the body during the floating. They also work for braking during stopping.The reactive swimming systems of the octopus and the cuttlefish actually function according to a principle that resembles jet planes. Through a closer examination, it is obvious that their muscular systems have been designed in the way most suited to them. It is, of course, absurd to assert that such complex structures could have been formed through coincidences.

There is an equally flawless design in the reproductive systems of cuttlefish. The eggs of these fish have sticky surfaces that enable them to adhere to cavities in the deeps of the sea. The embryo consumes the nutrients provided inside the egg until it is ready to hatch. The embryo breaks the egg casing with a small brushlike patch on its tail. This feature disappears shortly after hatching.39 Every little detail has been designed and functions as it is designed to do. All of this miraculous creation is nothing but an expression of the infinite knowledge of God.
  

The Termite Colony and Its Chemical Defensive Systems



The queen termite becomes extremely immobile as her body reaches 3.5 inches (9 centimetres) in length. Therefore, a special crew is responsible for her feeding, cleaning and safeguarding.
Termites are small, ant-like creatures that live in crowded colonies. They build surprising nests that tower above the ground, which are in themselves wonders of architecture. What's even more interesting is the fact that the builders of such grandiose towers, the worker termites, are totally blind.
The structure of the termite nest demonstrates extraordinarily complex systems. There are special soldier units in the termite colonies that are responsible for defence. Soldier termites are equipped with wonderful artillery. While some are warriors, some are patrolling termites and yet others are "suicide commandos". From the incubation of the queen to the construction of tunnels and walls or the harvesting of the cultivated mushrooms, every affair inside a termite nest depends on the performance in defence of the soldiers.

Termites start building their nests at ground level. As the population of the colony expands, in time the termite nest is enlarged accordingly. Its height can reach up to 13-16 feet (4-5 metres).
The survival of the colony is dependent upon the existence of the king and queen who engage in reproduction. The queen starts expanding after the first fertilisation. Its length can reach up to 3.5 inches (9 centimetres), and it looks exactly like a reproductive machine. It cannot move around easily. Since she does not do anything other than lying eggs, there is a special crew only to take care of her by feeding and cleaning her. She lays about thirty thousand eggs in a day, which means close to ten million eggs in her lifetime.

In the construction of the termite nest, there are supplementary systems such as air-conditioners, humidifiers and ventilators. Furthermore, for the different parts of the nest, different temperatures are set and maintained. The temperature and carbon dioxide content of circulating air vary depending on location within the termite nest:40
A: 86°F (30°C) - 2.7% CO
2
B: 77°F (25°C) - 2.7% CO2
C: 75°F (24°C) - 0.8% CO2
Being barren, the worker termites take care of housekeeping in the colony. Their lifespan ranges from two to four years. A certain group constructs and maintains the termite nest. Another group watches over the eggs, the newborn termites and the queen.
All members of the termite colony live together in organised communities. The members of these communities communicate through senses such as smell and taste, where chemical signals are exchanged. These deaf, dumb and blind creatures perform and co-ordinate such complicated duties as, building, hunting, stalking, security alerts and defence manoeuvres, by means of chemical signals.
The worst enemies of the termite colonies are ants and anteaters. When a colony comes under attack by one of these predators, a special suicide arm is launched. African termites are excellent warriors equipped with razor-sharp teeth. They tear the attacker's bodies into pieces.
The only connection of a termite nest to the world outside is through tunnels that are the size of a single termite. Passing through any one of these tunnels requires "permission". The "guard" soldier termites at the door easily detect if the intruders are in fact residents of the colony from their smells. The head of a single termite can also work as a cap for any one of these tunnels, which are exactly same size. In case of attack, termites actually use their heads to close off these holes by entering backwards and becoming stuck in these doorways.
The Sacrifice of Termites

Termites conduct extremely organised battles against their worst enemies, the ants and ant-eating animals. They are so determined in their defences that even the blind workers throw themselves on the intruders in order to help the soldiers to overcome the enemy. Above, the picture shows workers dedicated to helping soldiers with distinctly large heads.
Another one of the methods of defence that termites often use is to willingly sacrifice their lives in order to secure the colony and harm the enemy. Various species of termites achieve these suicide attacks in different ways, e.g. a certain species living in the rainforests of Malaysia is particularly interesting. These termites are like "walking bombs" due to their anatomy and behaviour. A special sac within their bodies holds a chemical compound that renders their enemies ineffective. In case of attack, when squeezed harshly by an ant or any other intruder the termite contracts its stomach muscles and raptures the lymph tissues, which saturates the predator with a thick, yellow-coloured fluid.
Worker termites in Africa and South America utilise a similar method. This is exactly a suicide attack since the internal organs of the creature are fatally damaged and the creature dies shortly thereafter.
If the offensive attack is very strong, then even the workers enter the battle in order to help the soldiers.
Termites' teamwork and such sacrifice destroys the fundamental assertion of Darwinism that "every creature lives for its own interest". Furthermore, these examples show these creatures to be organised in a very amazing way. For instance, why should a termite want to be a guardian? If it had an option, why would it choose to have the heaviest and most self-sacrificing job? If, in fact, it could choose, it would have chosen the easiest and least demanding duty. Even if we assume that it decides to sacrifice itself in defence, then it is still impossible for it to pass this behaviour down to succeeding generations through its genes. We know that worker termites are barren and are not able to produce any descendent generations.
Only the Creator of termites could have designed such a perfect colony life and given constituent termite groups distinct responsibilities. Guardian termites, too, diligently execute the duty that God inspires in them. The Qur'an states:

SYSTEMS PREVENTING COAGULATION
Termites utilise special systems created in their bodies in implementing inborn defensive and instinctive sacrifices. For instance, some termites spray poisonous chemicals into the scars inflicted as a result of bites. Some apply an interesting "brushing" technique; they paste the poison onto the offender's body by using the upper lip like a brush. Some termites apply an infectious adhesive onto the attacker by a "spraying" method.

A termite defends its colony even at the price of its own life. In the picture is a termite spraying adhesive fluid on an attacking ant.
Defence of the termite nest is the responsibility of a group of females in a species of African termite. These females are barren and relatively smaller soldiers. Royal guardians, which are much larger in size, safeguard the young larvae and the royal couple by preventing any intruders from entering the royal cell. Smaller soldiers help the workers in food gathering and repair of the nest.
The royal guards have been created for battle; they have shield-like heads and razor-sharp mandibles designed for defence. 10% of the body weight of the large soldiers is comprised of special fluids. These fluids are composed of open-chain hydrocarbons (alkenes and alkanes) and are stored inside sacs located to the front of their bodies. Royal guards inject these chemical fluids into wounds inflicted on enemies by means of their lower jaws.
What exactly do these fluids applied to enemies do? Researchers encountered a very astounding fact in answering this question. The fluids applied by the termites act to prevent the enemies' blood from clotting. In the bodies of ants there is a fluid called "haemolymph" which acts as blood. When there is an open wound in the body, another chemical starts coagulation and enables the wound to heal. The chemical fluid from termites renders this clot-forming chemical useless.
The presence of a coagulation system inside the body of a minute insect like the ant is another testimony to the creation. It is simply miraculous not only that termites produce a fluid that can neutralise this system but also have organs that can deliver the fluid effectively. Certainly, a perfect harmony such as this cannot possibly be explained through coincidence in any way. Termites are surely not chemists, who understand the details of the coagulation system in ants or synthesise a compound formula to neutralise this system. This flawless design is without a doubt another clear evidence that these creatures have been created by God.
Weapons of Termites
One can find many other similar examples of flawless design in the world of termites. The soldier termites of a termite family kill their enemies by rubbing poison onto their bodies. In order to accomplish this more effectively, they are given smaller mandibles and brush-like upper lips. These soldiers can also synthesise and store insecticide chemicals. A typical soldier can store defensive fluids that comprise up to 35% of its body weight, which is enough to kill thousands of ants.
Florida resident Prorhinotermes are created possessing a poison rubbing technique. They make use of chemicals called "nitroalkane" as poisons. Many other termites also use methods involving the application of poisons, but the amazing point is the different chemical structures of all these poisons. For instance, an African Schedorhinotermes utilise "vinyl ketones". Guyanan termites have "B-ketoaldehydes" and Armitermes termites have a "molecular string" as poison and chemicals called "esters" or "lactones" as their weapons. All of these poisons immediately react with biological molecules and cause death.

A soldier termite patrols in front of the termite nests. These termites spray a certain infectious and adhesive fluid, which is a type of chemical weapon.
On the foreheads of members of a Nasutitermitinae termite family are hose-like projections that have special sacs inside. In case of danger, the termite points this projection towards the enemy and sprays an infectious fluid. This weapon works just like a chemical bazooka.41
According to the theory of evolution, one has to accept the assumption that "primitive termites" had no chemical production systems in their bodies and that it somehow formed later as a result of a series of coincidences. However, such an assumption is totally illogical. For the poisoning system to work properly, not only the chemical itself but also the organs to handle these chemicals need to be totally functional. Furthermore, these organs have to be adequately isolated so that no poison spreads within the body. The dispensing organ has to be properly formed and isolated as well. The spraying pipe further requires a mechanical system that is powered by a separate muscle.
All these organs could not possibly have formed in a process of evolution over time since the lack of a single component would render the whole system useless causing the extinction of the termite. Therefore, the only logical explanation would be: the "chemical weapon system" has been created altogether in the same moment. And this would prove that there is a deliberate "design" in all of these, which is called "creation". Just like all the other creatures in the nature termites have been created in a moment. God, Lord of the Worlds, fabricated the poison production centre in their bodies and inspired in them the best way to utilise their faculties.

Blood: Life-Giving Fluid


Crucial Functions of Blood
Blood is a liquid that is created to give our bodies life. As long as it circulates within the body, it warms, cools, feeds and protects by cleansing the body of toxic substances. It is almost solely responsible for communication within our bodies. In addition, it immediately repairs any fractures in the walls of veins and so the system is rejuvenated.
On average, there is 1.32 gallons (5 litres) of blood in the body of a human weighing 132 pounds (60 kilograms). The heart can make this amount of blood circulate in the body easily within a minute. However, while running or exercising, this rate of circulation can increase to five times as high. Blood flows everywhere: from the roots of the hair to the toes, inside veins of varying sizes. The veins have been created of such a flawless structure that no clogging or sediments are formed. A variety of nutrients and heat are carried through this complex system.

Oxygen Carrier
The air that we breathe is the most crucial substance for our survival. The oxygen is as necessary for the cells' burning of sugars in energy production as it is for setting a log on fire. This is why oxygen has to be carried from the lungs to the cells. The blood circulatory system, resembling a complicated network of pipelines, serves this very purpose.

The longest arteries have been created to have the strongest structure since they are responsible for delivering the blood rich in oxygen and nutrients to all corners of the body. Veins are responsible for carrying blood from the organs of the body to the heart. Capillaries, on the other hand, have a perfect design as they distribute the blood to the remotest places.
Haemoglobin molecules inside the red blood cells carry the oxygen. Each one of the disk-shaped red blood cells carries about three hundred million haemoglobin molecules. The red blood cells display a flawless working order. They not only carry the oxygen, but also release it wherever it is necessary, e.g. in a working muscle cell. Red blood cells deliver oxygen to tissues, carry the carbon dioxide, which is produced after the burning of sugar, back to the lungs and then leave it there. Following this, they again bind to oxygen and take it to the tissues.

A PRESSURE BALANCED FLUID
Haemoglobin molecules also carry nitrogen monoxide (NO) gas in addition to oxygen. If this gas were not present in blood, its pressure would change constantly. Haemoglobin also regulates the amount of oxygen to be delivered to tissues by means of nitrogen monoxide. Amazingly, the source of this 'regulation" is nothing but a molecule, i.e. a mere collection of atoms that does not have a brain, eyes or conscious mind. Regulation of our bodies by a collection of atoms, of course, is a sign of the infinite wisdom of God Who created our bodies without flaws.
If it were not for the heart, blood would have been a stale, thick red fluid (above on the right). However, the heart pumps blood into the remotest portions of the body (above on the left)

A layer of special muscle tissue wraps the blood vessels. When the muscle contracts, the vessel becomes narrower and increases the blood pressure. The picture to the right is a section of a narrowed vessel. This is why the interior of the vessel is corrugated (above on the left). Around the vessel, there are muscle tendons (red) and a nerve (blue).


CELLS OF IDEAL DESIGN
Red blood cells make up the majority of all blood cells. An adult male blood contains thirty billion red cells, which would be enough to cover almost half the surface of a soccer field. These cells give colour to our blood and therefore to our skin.
Red cells look like discs. Due to their incredible flexibility, they can squeeze through capillaries and the minutest holes. If they were not so flexible, they would surely be stuck in various areas of the body. A capillary is normally four to five micrometres in diametre, whereas a red cell is about 7.5 micrometres (one micrometre is one thousandth of a millimetre, which is 0.000039 inch).
What would happen if red cells were not created with such flexibility? The researchers of diabetes gave some answers to this question. In diabetic patients, red blood cells loose their flexibility. This situation frequently gives way to clogging with inflexible red blood cells in the delicate tissues of the patients' eyes, which can lead to blindness.

Automatic Emergency System
The lifespan of a red blood cell is about 120 days after which they are removed by the spleen. This loss is balanced by the continuous production of new cells. Under normal conditions, 2.5 million red blood cells are generated per second, a number which can be increased if necessary. A hormone called 'erythropoietin" regulates the rate of generation. For example, as a result of heavy bleeding due to accident or nose bleeds, the loss is immediately balanced. In addition, the rate of generation is increased if the oxygen content of the air is reduced. For instance, while climbing at very high altitudes, due to the continuously declining oxygen content, the body automatically takes this action in order to make the most efficient use of the oxygen available.

Perfect Transportation System

The circulatory system feeds each one of the hundred trillion cells that constitute the human body. In the figure, the red vessels represent oxygenated blood and the blue depict the deoxygenated blood.
The fluid portion of blood called plasma carries numerous other substances present in the body apart from just blood cells. Plasma is a clear yellowish fluid, which comprises 5% of the normal body weight. In this fluid, 90% of which is water, salts, minerals, carbo-hydrates, fats and hundreds of different types of proteins are suspended. Some of the proteins in the blood are transport proteins, which bind lipids and carry them to tissues. If the proteins did not in this way carry the lipids, the lipids would randomly float anywhere, giving way to fatal health problems.
Hormones in the plasma take on the role of special couriers. They facilitate com-munication between organs and cells by means of chemical messages.
Albumin is the most populous hormone in the plasma, which is in a sense a transporter. It binds lipids such as cholesterol, hormones, billirubin, a toxic yellow bile pigment, or medicines like penicilin. It leaves the poisonous substances in the liver and takes other nutrients and hormones to wherever they are needed.
When all these things are considered, it becomes clear that the body is created in an extremely detailed way. The abilities of a single protein to distinguish between lipid, hormone and medicine, and to determine not only the locations in need of them but also the amounts to be delivered, are all indications of flawless design. Furthermore, these surprising examples are only few out of dozens of thousands of different biochemical events taking place in a body. All of the trillions of molecules in the body work in a marvellous harmony. And, in fact, all of these molecules spring from the division of a single cell that forms in the womb of a mother. It is clear that this miraculous system of the human body is a wonderful
artistry of God, Who created man from a single drop of water.

Special Control Mechanisms
Nutrients have to cross from the arteries through the artery wall, in order to penetrate into the necessary tissues. Although the artery wall has very small pores, no substance can penetrate it by itself. It is the blood pressure that facilitates this penetration. However, nutrients crossing over into the tissues in larger quantities than necessary causes inflammation in the tissues. Therefore, there is a special mechanism instituted for balancing blood pressure and withdrawing fluid back to the blood. This is the responsibility of albumin, which is larger than the pores in the artery wall and numerous enough in the blood to suck up the water like a sponge. If there were no albumin in the body, it would swell like a dry bean left in water.
On the contrary, materials in the blood should not enter the tissues of the brain uncontrolled, since unwanted substances can severely damage nerve cells (neurons). Therefore, the brain is protected against all possible scenarios of harm. Dense cell layers close off pores. All substances are required to pass through these layers as if passing through a security checkpoint, which facilitates a balanced flow of nutrients into the most sensitive organ of the whole body.
If a blood clot (above on the left) forms in the coronary veins of the heart and continues to enlarge, it leads to a heart attack. In some situations due to blood pressure, heart tissue is ruptured. Blood gushes out of the heart as if spraying from a hose (above on the right).


THERMOSTAT IN THE BODY

The Blood Clotting Mechanism: When a wound starts bleeding on our bodies, an enzyme called thromboplastin that is released from damaged tissue cells combines with the calcium and prothrombin in the blood. As a result of the chemical reaction, the resulting mesh of threads form a protective layer, which solidifies eventually. The top layer of cells eventually die, becoming cornified, so forming the scab. Underneath the scab, or protective layer, new cells are being formed. When damaged cells are completely replaced, the scab drops off.
Apart from toxins, red blood cells, vitamins and other substances, blood also carries heat, a by-product of energy generation in the cells. Distributing and balancing body heat in accordance with the outside temperature is vitally important. If there were no heat distribution system in our bodies, our arms would overheat and the rest of the body would be cool when the arm muscles are used, which would greatly damage the metabolism. This is why heat is evenly distributed throughout the body, which is facilitated solely by the circulatory system. In decreasing the body-heat that is distributed all over the body, the perspiration system is activated. In addition, blood vessels enlarge under the skin, enabling excess heat in the blood to be transmitted to the outside air. This is why when we run or do other high-energy activities, our faces become red. Blood circulation is as responsible in preservation of the body heat as in cooling. In colder temperatures, the blood vessels under our skin shrink, which serves to reduce the amount of blood in the area where heat escape is most probable and hence to keep cooling to a minimum. The reason for a person's face turning white when cold is the precaution that the body automatically takes.42
Everything taking place in the blood is extremely complicated and intertwined. Everything has been created flawlessly down to the smallest detail. In fact, there is such a wonderfully intricate balance in the bloodstream that the smallest breakdown could potentially cause very serious complications. Blood has been created with all its necessary properties by the One Creator in a moment. This Creator, the owner of superior knowledge and power, is God:

A System Without Room for Smallest Error: Blood Clotting
Everybody knows that bleeding will eventually stop when there is a cut or when an old wound starts bleeding again. Where the bleeding is, a blood clot forms that hardens and heals the wound in due time. This may be a simple and normal phenomenon for you, but biochemists have shown through their research that this actually is the result of a very complicated system at work. The lack of any one component of this system or any damage to it would render the whole process useless.
Blood has to coagulate in the right time and place and when normal conditions are restored, the clot should vanish. The system functions flawlessly down to the minutest detail.
If there is bleeding, the clot should form immediately in order to prevent the creature from dying. Furthermore, the clot should cover the entire wound and, more importantly, should only form over, and remain right on top of, the wound. Otherwise all the blood of the creature could coagulate and cause its death, which is why the clot should form at the right time at the right place.
The smallest elements of the bone marrow, the blood platelets or thrombocytes, are crucial. These cells are the main elements behind the coagulation of blood. A protein, called the Von Willebrand factor, ensures that, in their continuous patrol of the blood stream, these platelets do not miss the place of the injury. The platelets that become entangled in the location of the injury release a substance that collects countless others to the same place. These cells eventually shore up the open wound. The platelets die after performing their duty in locating the wound. Their sacrifice is only a part of the coagulation system in the blood.
Thrombin is another protein that facilitates coagulation of blood. This substance is produced only at the location of the wound. This production must be neither more nor less than necessary, and has also to start and stop exactly at the required times. There are more than twenty body chemicals called enzymes that have roles in the production of thrombin. These enzymes can trigger its reproduction or halt it. The process is under so much scrutiny that thrombin only forms when there is a real wound to the tissues. As soon as the enzymes of coagulation reach a satisfactory level in the body, fibrinogens that are composed of proteins are formed. In a very short while, a mesh of fibres form a web, which is formed at the location of the escaping blood. In the meantime, patrolling platelets continue to become entangled and accumulate at the same location. What is called a clot is the plug that is formed due to this accumulation.
When the wound totally heals, the clot dissolves.
The system that enables formation of the clot, determining its extent, strengthening or dissolving the formed clot undoubtedly, has an absolute irreducible complexity.43
The system works flawlessly down to the minutest detail.
What would happen if there were small problems within this perfectly functioning system? For example, if there was coagulation in the blood even without a wound, or if the clot could easily break off from the wound? There is a single answer to these questions: in such cases the bloodstream to the most vital and intricate organs, such as heart, brain and lungs, would be clogged with clots, which would inevitably bring death.
In reality, this shows us one more time that the human body is flawlessly designed. It is impossible to explain the clotting system of the blood through the hypothesis of coincidence or "gradual development" as asserted by the theory of evolution. Such a carefully engineered and calculated system as this is indisputable evidence of the perfection in creation. God, Who created us and placed us on this earth, has created our bodies with this system, which protects us in many cases of injury that we encounter throughout our lives.
The clotting of blood is very important not only for visible injuries but also for the ruptures of capillaries in our bodies that happen all the time. Although unnoticed, there are continuously small internal bleedings. When hitting an arm against a door or sitting down too heavily, hundreds of capillaries are ruptured. These bleedings are immediately stopped by means of the clotting system and the capillaries are reconstructed in their normal condition. If the impact is more serious, then the internal bleeding is stronger, giving way to the bruising commonly termed "turning purple". A human lacking the coagulation system would have to avoid even the smallest impacts. Haemophilic patients, having defective coagulation systems, live their lives like that. Patients with advanced haemophilia unfortunately do not survive too long. Even small internal bleedings, inflicted by a simple slip and fall, could be enough to end their lives. Due to this simple reality, each individual should consider the miracle of creation within his/her own body and be thankful to God, Who created that body flawlessly. This body is a blessing to us from God, a single cell of which we cannot even reproduce.
The Blood Coagulation Mechanism
The figure below44 illustrates the coagulation mechanism of the blood. The clot is generated as a result of the chemical reactions of a series of substances in a certain order. For dissolution of the clot, a similarly complicated process takes place.
-